
Improving DRAM Fault Characterization
Through Machine Learning

Elisabeth Baseman∗, Nathan DeBardeleben∗, Kurt Ferreira†, Scott Levy‡,
Steven Raasch§, Vilas Sridharan¶, Taniya Siddiqua§ and Qiang Guan∗
∗Ultrascale Systems Research Center, Los Alamos National Laboratory

{lissa, ndebard, qguan}@lanl.gov
†Center for Computing Research, Sandia National Laboratories

kbferre@sandia.gov
‡Department of Computer Science, University of New Mexico

slevy@cs.unm.edu
§AMD Research, Advanced Micro Devices, Inc.
{Steven.Raasch,Taniya.Siddiqua}@amd.com

¶RAS Architecture, Advanced Micro Devices, Inc.
Vilas.Sridharan@amd.com

Abstract—As high-performance computing systems continue to
grow in scale and complexity, the study of faults and errors is
critical to the design of future systems and mitigation schemes.
Fault modes in system DRAM are a frequently-investigated key
aspect of memory reliability. While current schemes require
offline analysis for proper classification, current state-of-the-
art mitigation techniques require accurate online prediction for
optimal performance. In this work, we explore the predictive
performance of an online machine learning-based approach
in classifying DRAM fault modes from two leadership-class
supercomputing facilities. Our results compare the predictive
performance of this online approach with the current rule-based
approach based on expert knowledge, finding a 12% predictive
performance improvement. We also investigate the universality
of our classifiers by evaluating predictive performance using
training data from disparate computing systems to achieve a 7%
improvement in predictive performance. Our work provides a
critical analysis of this online learning technique and can benefit
system designers to help inform best practices for dealing with
reliability on future systems.

I. INTRODUCTION

As high-performance computing systems continue to grow
in scale and complexity, reliability has become a great concern.
If current predictions hold, future exascale systems expected in
the early 2020s will see a hundred-fold increase in the amount
of main memory (DRAM) and cache memory (SRAM) com-
pared to current levels [1]. This places a great deal of pressure
on system designers and operators to understand the failure
characteristics of current systems in order to maintain relia-
bility comparable to current systems. Due to this importance, a
number of recent studies have focused on analyzing failures on
current extreme-scale high performance computing systems,
both within the U.S. national laboratory complex [2] and
commercial data centers [3].

While these studies have contributed a number of significant
insights on the characteristics needed for a reliable extreme-
scale system, they have also exposed the significant challenges
involved in this type of detailed analysis. In particular, these

studies demonstrate the uncertainty involved and care needed
in failure characterization. A truly accurate classification of
faults typically requires the complete failure log dataset and
therefore current studies have focused on offline analysis
techniques. This is in contrast to current state-of-the-art failure
mitigation techniques [4] that require accurate online pre-
diction to react to these faults. Online analysis has other
significant advantages over the current offline techniques; they
have the potential to predict and diagnose faults on new
systems in which no offline failure log currently exists, and can
adapt to changing failure modes over time as a system ages. In
addition, determination of fault modes can enable the system
to take action to avoid this fault in the future, for example
retiring that page in system memory [5].

In this paper, we present an analysis on the potential of
one such online characterization technique. More specifically,
we explore the predictive performance of an online machine
learning-based approach in classifying memory fault modes
from two leadership-class supercomputing facilities. This work
provides a critical analysis of this online learning technique
and can benefit system designers to help inform best practices
for dealing with reliability on future systems.

II. SUPERCOMPUTING SYSTEMS

Our study comprises data from two leadership-class produc-
tion systems: Hopper, a supercomputer located at LBNL in
Oakland, California; and Cielo, a supercomputer at LANL in
Los Alamos, New Mexico. These two systems are very similar.
Hopper contains approximately 6,000 compute nodes. Each
node contains two 12-core AMD OpteronTMprocessors, each
with twelve 32KB L1 data caches, twelve 512KB L2 caches,
and one 12MB L3 cache. Cielo, on the other hand, contains
approximately 8,500 compute nodes. Each node contains two
8-core AMD OpteronTMprocessors, each with eight 32KB L1
data caches, eight 512KB L2 caches, and one 12MB L3 cache.



Both systems have eight 4GB DDR-3 registered DIMMs for
a total of 32GB of DRAM per node.

In both Hopper and Cielo, each DDR-3 DIMM contains
two ranks of 18 DRAM devices, each with four data (DQ)
signals (known as an x4 DRAM device). In each rank, 16 of
the DRAM devices are used to store data bits and two are used
to store check bits. A lane is a group of DRAM devices on
different ranks that shares data (DQ) signals. DRAMs in the
same lane also share a strobe (DQS) signal, which is used
as a source-synchronous clock signal for the data signals.
A memory channel has 18 lanes, each with two ranks (i.e.,
one DIMM per channel). Each DRAM device contains eight
internal banks that can be accessed in parallel. Logically, each
bank is organized into rows and columns. Each row/column
address pair identifies a 4-bit word in the DRAM device.

The primary difference between the two memory subsys-
tems is that Cielo uses chipkill-correct ECC on its memory
subsystem, while Hopper uses chipkill-detect ECC. Chipkill-
detect ECC can detect but not correct any error in a single
DRAM chip, while chipkill-correct can correct any error in a
single DRAM chip.

III. CURRENT RULE-BASED SYSTEM

Current methods for characterizing DRAM memory fault
modes are offline, rule-based, and deterministic. This approach
is useful for studying aggregate behavior, but not for online
diagnosis and fault mitigation. The rule-based classification
system runs on memory error data collected over the entire
lifetime of the machine, and assumes that each DRAM will
see at most one fault. Therefore, the rule-based system labels
each DRAM that has produced errors with a fault mode, based
on the entire stream of errors that DRAM has produced.

Note that because we cannot directly observe the fault
patterns on the memory hardware to verify the fault modes,
we must rely on this rule-based system run on data over
all available time for our ground-truth labels in the learning
process for our online system.

The DRAM fault definitions used in this rule-based system,
defined by industry domain experts, are as follows:

• Multi Rank: Two DRAMs in the same lane with errors.
• Single Bit: DRAMs not in a Multi Rank Fault, errors all

length one bit, and all same pin, row, column, and bank.
• Single Word: DRAMs without either of the above faults,

and errors all same row, column, and bank.
• Single Row: DRAMS without any of the above faults,

and errors all same row and bank.
• Single Column : DRAMS without any of the above faults,

and errors all same column and bank.
• Single Bank: DRAMS without any of the above faults,

and errors all same bank.
• Multi Bank: DRAMS without any of the above faults.

IV. APPROACH

Our goal is to classify memory fault modes as early in the
stream of errors they produce as possible. Therefore, unlike
the rule-based system, we account for the time variable.

We know that each memory fault produces a stream of one
or more errors, and we assume that each DRAM experiences
at most one fault. Then, we can use number of errors seen
from the same DRAM as a proxy for time. In other words, we
align each of the DRAM’s error streams to start at time 0. We
then subset the error data by truncating the error streams, first
creating a dataset by taking all errors that occur first in their
DRAM’s error stream, then taking the first two errors of each
DRAM’s data stream, etc., and computing our features from
these smaller datasets. Note that, as we progress in “time”, the
size of the dataset we consider decreases, as shown in Figure
1. In addition, the fault mode distributions differ across the
various subsets, as shown in Figure 2.

Fig. 1. Dataset subset size as a percentage of the total size of the dataset, as
time progresses. Time is measured in number of errors produced by a DRAM.

Our work examines how early in these error streams we can
identify the DRAM’s fault mode with predictive performance
greater than that of the rule-based system run on the same
truncated error stream.

A fixed-time-interval memory scrubber reports raw feature
information for each error it observes from a DRAM. The
raw features collected for each error from the DRAM devices
and translated by domain experts include a timestamp and
location information (host, node, channel, lane, chip select,
bank, row, column, and pin). For each error, we use the
location information to engineer calculated features including
total number of errors seen in the same bank up to the current
timestamp, frequency of errors seen in the same bank since
the first error in that bank, and time since the last error from
the same bank, for each of the raw location features. This
anonymizes away the specific location values, and focuses
instead on relative error locations relevant to fault modes.

We apply four machine learning algorithms to the features
calculated from error locations at each point in “time” (where
time is measured in terms of number of errors produced
by each DRAM). Our four learning algorithms are naı̈ve
Bayes [6], logistic regression [7], random forest [8], and
gradient boosted random forest [9]. We then examine the
predictive performance of each algorithm at each point in time,
and compare the results to the predictive performance of the
rule-based system run at each point in time.

We evaluate the predictive performance of our trained



(a) Distribution of fault modes in Hopper over time.

(b) Distribution of fault modes in Cielo over time.

Fig. 2. Distribution of fault modes in each supercomputing system, as
determined by the rule-based system (ground truth), over time.

classification algorithms using one-versus-rest AUC (Area
Under Receiver Operating Curve), and take the arithmetic
mean across all fault modes [10]. AUC is a better evaluation
metric than accuracy because it does not have to be considered
relative to a baseline. In AUC terms, a (unitless) value of 0.5
is the same performance as random guessing, and a value of
1.0 is perfect predictive performance.

V. EXPERIMENTAL SETUP

Using data extracted from two leadership-class supercom-
puting facilities, we can investigate predictive performance
when trained and tested on data from the same supercomputing
facility, as well as when trained on data from one facility and
tested on the other. We calculate features as described above,
and discard data for single word faults because they do not
appear in the Hopper data, make up only 0.83% of faults in
the Cielo data, and each single word fault in the Cielo data
only causes a single error.

For each of four machine learning algorithms — naı̈ve
Bayes, logistic regression, random forest, and gradient boosted
random forest — we run 200 train/test iterations on each time-
partitioned dataset using a 60/40 train/test split. The random
forest and gradient boosted random forest are both initialized
with 200 estimators. The logistic regression uses an LBFGS
solver with an L2 penalty. We report the arithmetic average
of the resulting AUC values from each set of 200 iterations

Fig. 3. AUC averaged across all fault modes on Hopper.

for each fault mode, and report the average of all fault mode
AUCs for each algorithm at each point in time.

We repeat this experiment scheme for each of three train/test
pairings: train/test on Hopper, train/test on Cielo, and train on
Hopper test on Cielo. The results indicate not only whether
our approach performs well, but also whether the approach
may be more universal and apply across systems.

VI. CLASSIFICATION RESULTS

Figure 3 shows AUC averaged over all fault modes for each
learning algorithm trained and tested on Hopper, and Figure 4
shows the same analysis on Cielo. Standard error bars are not
shown due to negligible size. We find that the random forest
classifier achieves the highest predictive performance on both
Hopper and Cielo, out-performing the rule-based system at all
but one point in time for the first five timesteps. The greatest
performance improvement, approximately 12% on Hopper and
9% on Cielo, over the current rule-based system is achieved
after only two errors have been seen from each DRAM.

We present results for the best-performing learning al-
gorithm in the cross-system experiments. Figure 5 shows
average AUC results for random forests trained on Hopper
data and tested on Cielo data, as well as AUC results for
each individual fault mode in these cross-system experiments.
While performance improvement varies by fault mode, on
average we see a 7% increase in predictive performance of
a random forest over the rule-based system, after the second
error is seen from each DRAM. The highest performance
improvement, of approximately 27%, is again seen at the
second point in time, for single bank faults. The rule-based
system never out-performs the random forest classifier at the
second point in time. This implies that a machine learning
system could be trained on an older supercomputing system
and then immediately applied online to a newer facility.

VII. CONCLUSION

We find that trained classifiers can identify memory fault
modes earlier and more accurately than the current deter-
ministic rule-based system in both Hopper and Cielo, two
leadership-class supercomputing facilities. The random forest
classifier shows the greatest improvement in predictive per-
formance, with a maximum increase of 12% when trained
and tested on the same system, and a predictive performance



Fig. 4. AUC averaged across all fault modes on Cielo.

(a) AUC averaged over all fault modes for random forests trained on Hopper
and tested on Cielo.

(b) Single bit fault average AUC. (c) Single row fault average AUC.

(d) Single column fault AUC. (e) Single bank fault average AUC.

(f) Multi bank fault average AUC. (g) Multi rank fault average AUC.

Fig. 5. Fault mode classification performance results for a random forest
trained on Hopper and tested on Cielo.

increase of 7% when trained and tested on disparate sys-
tems. These promising results indicate that machine learning
algorithms can exploit universal aspects of DRAM faults,
applicable across computing systems.

Future work includes evaluating learning algorithms trained
on supercomputer “burn-in” time, rather than on a disparate
system, as well as investigating unsupervised learning methods
to uncover anomalies and unexpected fault modes.

ACKNOWLEDGMENTS

The authors thank John Shalf from Lawrence Berkeley Na-
tional Laboratory, who provided the Hopper field data. Please
see “Memory Errors in Modern Systems: The Good, The
Bad, and The Ugly” for more on the LANL/SNL/LBNL/AMD
collaboration on supercomputer memory errors. This work
was performed at the Ultrascale Systems Research Center
(USRC) at Los Alamos National Laboratory, supported by the
U.S. Department of Energy contract AC52-06NA25396. The
publication has been assigned the LANL identifier LA-UR-16-
22693 and the Sandia identifier SAND 2016-3270C. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000. AMD, the AMD Arrow logo,
AMD Opteron, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Product names used in this
publication are for identification purposes only and may be
trademarks of their respective companies.

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale
computing study: Technology challenges in achieving exascale systems,”
Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[2] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi, “Feng shui of supercomputer memory positional effects in
DRAM and SRAM faults,” in High Performance Computing, Network-
ing, Storage and Analysis (SC), 2013 International Conference for.
IEEE, 2013, pp. 1–11.

[3] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
a large-scale field study,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 37, no. 1. ACM, 2009, pp. 193–204.

[4] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications
at extreme scales,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE
Press, 2014, pp. 895–906.

[5] D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro, “Assessment
of the effect of memory page retirement on system RAS against
hardware faults,” in Dependable Systems and Networks, 2006. DSN
2006. International Conference on. IEEE, 2006, pp. 365–370.

[6] K. P. Murphy, “Naive Bayes classifiers,” University of British Columbia,
2006.

[7] D. W. Hosmer Jr and S. Lemeshow, Applied logistic regression. John
Wiley & Sons, 2004.

[8] T. K. Ho, “Random decision forests,” in Document Analysis and
Recognition, 1995., Proceedings of the Third International Conference
on, vol. 1. IEEE, 1995, pp. 278–282.

[9] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[10] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learn-
ing algorithms,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 17, no. 3, pp. 299–310, 2005.


