Relational Synthesis of Text and Numeric Data for
Anomaly Detection on Computing System Logs

Elisabeth Baseman, Sean Blanchard
Ultrascale Systems Research Center!
Los Alamos National Laboratory
Los Alamos, NM 87544
Email: {lissa, seanb}@lanl.gov

Abstract—Monitoring high performance computing systems
has become increasingly difficult as researchers and system
analysts face the challenge of synthesizing a wide range of
monitoring information in order to detect system problems on
ever larger machines. We present a method for anomaly detection
on syslog data, one of the most important data streams for deter-
mining system health. Syslog messages pose a difficult question
for analysis because they include a mix of structured natural
language text as well as numeric values. We present an anomaly
detection framework that combines graph analysis, relational
learning, and kernel density estimation to detect unusual syslog
messages. We design an event block detector, which finds groups
of related syslog messages, to retrieve the entire section of syslog
messages associated with a single anomalous line. Our novel
approach successfully retrieves anomalous behaviors inserted into
syslog files from a virtual machine, including messages indicating
serious system problems. We also test our approach on syslog
messages from the Trinity supercomputer and find that our
methods do not generate significant false positives.

I. INTRODUCTION

System logs (syslogs) are the primary way to monitor
computer system health. Syslogs on desktop or laptop systems
are small and manageable, but in the case of large High
Performance Computers (HPC), which can consist of 20,000+
servers, the quantity of data quickly overwhelms human ad-
ministrators. HPC systems typically have complex components
that often interact in unexpected ways, making diagnosing
incorrect system behavior a subtle and difficult problem.

System logs are an information rich set of data. Each
message contains little waste text, as the purpose is to inform
operators about the current status of the machine while mini-
mizing the amount of time spent writing out logs. Each syslog
message potentially contains a mixture of text and numeric
data, and messages come in a variety of formats. This creates
an interesting machine learning problem. We present a method
for synthesizing this textual and numeric data and detecting
anomalous system events.

Our work makes the following contributions:

I'This work was performed at the Ultrascale Systems Research Center
(USRC) at Los Alamos National Laboratory, supported by the U.S. Depart-
ment of Energy contract DE-AC52-06NA25396. The publication has been
assigned the LANL identifier LA-UR-16-25497.

2This work was performed during an internship at the Ultrascale Systems
Research Center at Los Alamos National Laboratory in Los Alamos, NM.

Zongze Li*, Song Fu
Department of Computer Science and Engineering
University of North Texas
Denton, TX 76203
Email: ZongzeLi2 @my.unt.edu, Song.Fu@unt.edu

e A novel anomaly detection framework combining rela-
tional learning, graph analysis, and kernel density esti-
mation, to find unusual syslog messages.

o« A method for detecting and grouping related syslog
messages that indicate a single coherent system event.

This paper proceeds as follows: Section II reviews related
work and Section III describes the syslog data our work
investigates. Sections IV and V describe our approach to
synthesizing textual and numeric components of syslog data,
and Section VI presents our algorithm for grouping related
syslog messages. Section VII describes the anomaly detection
step. Section VIII details our experimental setup, Section IX
presents our results, and Section X concludes.

II. RELATED WORK

Anomaly detection on text is an open research question.
Chandole er al. provide an excellent overview of general
anomaly detection techniques [1]. Guthrie et al. investigate
unsupervised anomaly detection on text considering only large
corpora of text documents, making their work only marginally
applicable to short syslog messages [2].

Kumaraswamy et al. note that anomaly detection on text in
a specific domain is significantly improved by incorporating
expert knowledge [3]. However, in the syslog domain, anoma-
lies may be indicated by of keywords, but also can be indicated
only by numeric content, such as in a kernel back trace.

Research specifically on analysis of syslog data has been
sparse to date. The most notable work on analysis of textual
log data was conducted by Xu et al. [4]-[7]. These studies
focus on detecting abnormal behavior using system console
logs. After parsing the logs and removing normal events, they
find unusual behaviors using principal component analysis.
Their goal of finding abnormal behaviors within console logs
is similar to our goal of detecting anomalies in syslog data,
however, they limit their study to the openings and closures
of files in filesystems. We aim for a more general approach.

Other attempts at analysis of text logs include work by Fulp
et al. in which frequencies of message signatures are investi-
gated within sliding time windows [8]. Similarly, Gainaru et
al. use log message frequencies to find correlated events, but
do not investigate a large enough data set to draw definitive
conclusions from their results [9].



Raw Syslog Line

Examples:
“Call Trace:”
“Kernel: c0abSbc0”
“Call kernel version 5.17

O

Token Number

Examples:
call, trace,
kernel, version

A4

Adjacent

Examples:
c0ab9bcH,5.1

Fig. 1. The relational schema for syslog messages. We create a relational
schema over the key entities in syslog messages: the raw line, the textual
tokens, and the numeric data. The crow’s feet indicate many-to-one relation-
ships. Each syslog line can have zero or more textual tokens, and zero or
more associated numbers. Each textual token is adjacent to 0, 1, or 2 other
textual tokens. The pictured examples are fictitious simplified messages.

III. SYSTEM LOG DATA

Syslog messages are one of the most data-rich sources of
information regarding system health. Information logged by
the syslog utility includes a wide range of system activi-
ties. Unusual syslog messages can be indicators of serious
problems, which may require human intervention. However,
syslogs are long and messy, and going through them line by
line by hand is time-consuming and error prone.

Machine learning can be brought to bear on syslog analysis.
The syslog messages are data-rich, with content as well as
structure. A basic message contains a timestamp, a prompt
indicating the machine name, and the raw message content.
This message can range from a single token up to about
100 characters. The message content may contain natural
language text, numeric data, or a combination of the two. The
natural language vocabulary of syslog is more limited than
a human’s vocabulary, leading to significant structure in the
syslog messages. Textual data could include information about
running processes and their progress, while numeric data may
contain memory addresses, version information, etc.

We investigate syslog messages generated by a virtual
machine as well as a subset of messages from open science
testing of the Trinity supercomputer at Los Alamos National
Laboratory. During this Phase 1 configuration, Trinity was a
9,436 node Cray XC30. Each node contained two Haswell
Xeon E5-2698v3 16 core processors with 128 GB of main
memory and a Cray Aries-based network. Syslog messages
from a supercomputer of this size amount to terabytes of data
per day, making automated syslog message anomaly detection
crucial to monitoring and maintaining system health.

IV. TEXT DATA: GRAPH ANALYSIS

Rather than drawing on natural language processing tech-
niques that require large corpora and assume a large vocabu-

H cOab9bcO ‘
—{ 51|

Fig. 2. The relational ground graph generated from the example messages
and schema in Figure 1. One node is created for each raw line, textual token,
and numeric token. Raw lines are connected to the textual and numeric tokens
they contain (indicated in black and orange, respectively). Edges also connect
textual tokens that occur adjacent to each other in any raw line (indicated in
blue). Each textual-textual edge is annotated with the number of times the
adjacency is observed in the entire syslog file.

Line 2

version Line 3

lary, we cast the problem of analyzing the textual component
of syslog messages as a graph analysis question. This allows
us to exploit the structure in the text of syslog messages. This
text data is too large to enumerate efficiently, so we turn to
graph clustering techniques.

Figure 1 shows syslog messages cast as a template graph,
known as a relational schema, using statistical relational
learning [10]. We create a node in the graph for each syslog
message and each token. The crow’s feet in the diagram
indicate a many-to-one or many-to-many relationship. This
relational schema simplifies the syslog messages by repre-
senting each type of entity (raw lines, text, and numbers)
and the relationships between these entities. We add edges
between textual tokens if they appear adjacent in any log lines,
annotating the edges with counts of how many times the tokens
occur adjacent to each other. We add edges between messages
and tokens when the tokens occur within that message, and
between numeric nodes and messages when the number occurs
in that message. This creates an undirected, weighted graph.
Figure 2 shows an example of the complete graph, known as a
ground graph. This ground graph can be large, but our analysis
only considers subgraphs, focusing on entities of interest.

To analyze text data in syslog messages, we focus on the
subgraph of the ground graph involving only textual tokens.
We use the Infomap algorithm on this subgraph to extract
meaningful clusters [11]. Infomap is a hierarchical clustering
algorithm based on the probability of a random walker to
transition between communities in the graph as well as the
probability to stay within a community.

Running Infomap on the subgraph of textual tokens gives
clear, interpretable clusters. Figure 3 shows the clusters we
find. Note that related terms tend to appear in the same cluster.
In addition, Infomap outputs a manageable number of clusters.
We use the resulting term-cluster assignments in a later step
of our anomaly detection framework. Casting the problem
as clustering allows our anomaly detection scheme to take
advantage of content as well as structure in syslog messages.



Cluster Top Tokens Line ID Message Content

1 activat, work, stage, device, own, woke 1 kernel: 00000000 c0ab9bcO0 00000286
2 read, process, made, successful, main 2 kernel: sys_clock_gettime+0x98/0xb0
3 call, trace 3 started daemon version 0.96
4 fail, no, sink—-inputc, create, initial 4 kernel: Call Trace:
5 all, rights, page, send, ahci, uid, cpu 5 Stage 5 of 5 (IP Configure) complete.
6 subsequent, Snd_pcm_avail, another Fig. 4. Example (truncated) syslog messages.

Fig. 3. Infomap cluster IDs based on syslog messages from a virtual

machine, and their corresponding highest-ranked (stemmed and processed)
textual tokens. Note that related tokens tend to be assigned to the same cluster.

V. NUMERIC DATA: RELATIONAL FEATURES

For each message, we extract all decimal and hexadecimal
numbers. Because the format of each syslog message may
differ, the representation of numbers, and indeed the count
of numbers in the messages also differ. To handle this inho-
mogeneity, we use relational features to describe per-message
numeric data [12]. Instead of including the raw numeric values
in each message, we include the count of numeric values,
their average, and their standard deviation. This makes us
agnostic to the particular formatting of the messages. Figure 4
lists some example truncated syslog messages. After numeric
feature extraction, the lines are simplified to the features
shown in Figure 5. This gives, for each syslog message, a
set of numeric features that function as input to the anomaly
detection step of our method.

VI. EVENT BLOCK DETECTION

A single “event” on a system, such as booting, shutting
down, a failure, etc., generates one or more related syslog
messages. Similar events, such as two different shutdown
sequences, should be considered the same event type even
though the exact syslog messages may differ. We group
together related syslog messages into larger event blocks,
assigning groups of syslog messages that indicate the same
underlying event to the same event block. Our algorithm
consists of three parts: (1) Pattern generation, (2) Adjacency
detection, and (3) Consolidation.

Pattern Generation: When the algorithm receives a sys-
log message, it stores each textual token’s index within the
message, which we call a pattern.

Adjacency Detection: After storing a pattern for each
message, we calculate the distribution over patterns. We detect
patterns that always occur adjacent to each other, combining
them to start building event blocks. Having done this for the
entire syslog file, we obtain a list of preliminary event blocks.

Consolidation: We use our preliminary event block list to
consolidate blocks tending to occur together. For each pair
of blocks, we calculate the probability that the blocks occur
together, within some block path length threshold. That is, if
our path length threshold is 3, we allow for sequences which
include a third block occurring between the two blocks being
considered. For each pair of blocks A and B, we consider the
probability that block A precedes block B within the given

Line ID | Number Count Average StDev
1 3 1,077,490,882 | 1,866,268,393
2 2 164 16.971
3 1 0.96 0
4 0 0 0
5 2 5 0

Fig. 5. Example relational numeric features, calculated from the example
syslog messages in Figure 4.

threshold, and the probability that block B precedes block A
within the same threshold.

We set a lower bound on the probability of blocks A and
B co-occurring. We found that a lower bound of 99% was
sufficient to find reasonable interpretable blocks, as defined
by our domain expert. In the virtual machine syslog messages,
our algorithm recovers a total of 56 unique event blocks.

VII. ANOMALY DETECTION

After extracting the Infomap clusters on textual data, and
relational features on numeric data, we combine these two sets
of features with keyword counts (“error”, “segfault”,
and “fault”) to create a single dataset. For each message, we
calculate the percentage of its textual tokens contained in each
Infomap cluster. We assign the message to the cluster with the
maximum percentage of its tokens. We conduct one kernel
density estimate per cluster to create a fine-grained anomaly
detector. That is, we detect not only that a message is unusual,
but that it is unusual for the type of message it is.

We estimate the density of each message given its cluster,
ranking the messages based on this estimate, with the least
dense messages ranked as most anomalous. To provide the
analyst with useful context, we report the entire event block
containing the anomalous message.

VIII. EXPERIMENTAL SETUP

We run two sets of experiments: one on a set of 4,408 syslog
messages from a virtual machine with unusual messages
inserted, and the second on a subset of syslog messages from
the Trinity supercomputer. For the dataset known to contain
unusual behavior, syslog messages were extracted from a
virtual machine test server using the Linux sysrq infrastructure
to insert process traces into the system logs. On production
machines, back traces typically occur in syslog messages when
a machine encounters a strange behavior or bug. These are key
in determining the root cause of a computer’s bad behavior.

Preprocessing: We remove the initial set of syslog mes-
sages indicating only a boot sequence. These are uninteresting



kernel: [<c0709b9b>] ? ata_sff_hsm_move+0x10b/0x790
kernel: [<c04654e5>] ? irg_exit+0x35/0x70
kernel: [<c046def0>] ? process_timeout+0x0/0x10
kernel: [<c04811fb>] ? prepare_to_wait+0x5b/0x60
kernel: [<c070a220>] ? ata_sff_pio_task+0x0/0x120
kernel: [<c047b957>] ? worker_thread+0x197/0x230
kernel: [<c0480ee0>] ? autoremove_wake_function+0x0/0x40
kernel: [<c047b7c0>] ? worker_thread+0x0/0x230
kernel: [<c0480b9c>] ? kthread+0x7c/0xa0
kernel: [<c0480b20>] ? kthread+0x0/0xa0
kernel: [<c0409fbf>] ? kernel_thread_helper+0x7/0x10
kernel: ksuspend_usbd S fEEE£f£f 0 22 2 0x00000000
kernel: £70ddaa0 00000046 ffd9da60 ffffffff 08569578 00000000 00000001 £703aacc
kernel: c0a9a580 00000000 0857lefe 00000000 cOb737cO cOb737c0 £70ddd48 cOb737cO

kernel: cO0b6f0ad4 c0b737c0 £70ddd48 £70fe000 bed968dd f70ddaald cOb737c0 c085£892

Fig. 6. Top-ranked anomalous syslog message event block.

messages and tend to be almost exactly the same each time.
Simply running a diff command may be sufficient for an
analyst to determine unusual boot sequences. Our event block
detection scheme accurately identifies these boot sequences,
automating their removal from the dataset. At some point
the system shifts from setting up services to running user
applications, and this is where we begin our investigation. On
supercomputers this is an easily detectable state.

We pre-process the textual tokens in each syslog message.
We convert tokens to the same case and remove superfluous
characters, such as colons and quotation marks. A stemmer
reduces each token to its root. This allows us to exploit
more structure within the graph analysis. We remove tokens
included in a list of irrelevant stop words, a technique in
natural language processing.

Evaluation: A successful anomaly detection algorithm
would recover the back traces inserted into the virtual machine
syslog messages, given only the relational features we have
extracted and a simple kernel density estimator. Because the
Trinity data is a real set of syslog messages, we do not
necessarily expect to detect any anomalous behavior. However,
detecting unexpected anomalous behavior would be useful for
further studies of that computing facility.

IX. RESULTS

Figure 6 shows the event block of syslog messages ranked
as most anomalous by our method run on the virtual machine
server syslog file. While the top five most anomalous messages
all come from this grouping, the most anomalous message we
find is line 13 in Figure 6. Retrieving the event block contain-
ing that message also includes the other most anomalous lines.
Presenting the analyst with the associated event block reduces
time spent looking at individual anomalous messages which
were generated by the same underlying event. We note that this
collection of messages is a kernel back trace. This grouping
is exactly the unusual behavior inserted by our analyst.

When running our method on a set of syslog messages
from the Trinity supercomputer, we find that none of the

individual messages have particularly low density values, and
therefore all of their associated event blocks are marked by our
algorithm as normal behavior. This is not unexpected, as there
were no major incidents during this time period on Trinity.
However, we do find this result useful in that it confirms our
method does not alert on uninteresting syslog events, and as
such does not produce a significant number of false positives.

X. CONCLUSION

We have presented an anomaly detection method for text
and numeric data contained in computing system log mes-
sages. The method includes graph analysis techniques as
well as relational techniques, and density estimation. We
also presented a novel event block detection algorithm for
finding related syslog messages that indicate a larger un-
derlying system event. Our combined methods successfully
extract unusual behavior from syslog message files, including
identifying anomalous events inserted into a virtual machine
server. We find no false positives when running our method
on syslogs containing normal behavior from the Trinity su-
percomputer at Los Alamos National Laboratory. Future work
includes refining more domain-specific features, and running
our analyses on the event blocks themselves rather than on
individual messages. Our methods are extremely useful for
analysts sifting through terabytes of syslog data a day in order
to diagnose and mitigate serious problems in supercomputing
systems, significantly decreasing the time and effort required
to identify that something has gone seriously wrong.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[2] D. Guthrie, L. Guthrie, B. Allison, and Y. Wilks, “Unsupervised anomaly
detection.” in IJCAI, 2007, pp. 1624-1628.

[3] R. Kumaraswamy, A. Wazalwar, T. Khot, J. W. Shavlik, and S. Natara-
jan, “Anomaly detection in text: The value of domain knowledge.” 2015.

[4] W. Xu, L. Huang, and M. I. Jordan, “Experience mining google’s
production console logs.” in SLAML, 2010.

[5] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. L. Jordan, “Mining
console logs for large-scale system problem detection.” SysML, vol. 8,
pp. 4-4, 2008.

[6] W. Xu, L. Huang, A. Fox, D. Patterson, and M. L. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 117-132.

[71 W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in 2009 Ninth
IEEE International Conference on Data Mining. 1EEE, 2009, pp. 588—
5917.

[8] E. W. Fulp, G. A. Fink, and J. N. Haack, “Predicting computer system
failures using support vector machines.” WASL, vol. 8, pp. 5-5, 2008.

[9]1 A. Gainaru, F. Cappello, J. Fullop, S. Trausan-Matu, and W. Kramer,
“Adaptive event prediction strategy with dynamic time window for large-
scale hpc systems,” in Managing Large-scale Systems via the Analysis
of System Logs and the Application of Machine Learning Techniques.
ACM, 2011, p. 4.

[10] L. Getoor, Introduction to statistical relational learning.
2007.

[11] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, no. 4, pp. 1118-1123, 2008.

[12] J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning relational
probability trees,” in Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM,
2003, pp. 625-630.

MIT press,



